On the Spectral Deferred Correction of Splitting Methods for Initial Value Problems
نویسندگان
چکیده
Spectral deferred correction is a flexible technique for constructing high-order, stiffly-stable time integrators using a low order method as a base scheme. Here we examine their use in conjunction with splitting methods to solve initial-boundary value problems for partial differential equations. We exploit their close connection with implicit Runge–Kutta methods to prove that up to the full accuracy of the underlying quadrature rule is attainable. We also examine experimentally the stability properties of the methods for various splittings of advection-diffusion and reaction-diffusion equations.
منابع مشابه
High order operator splitting methods based on an integral deferred correction framework
Integral deferred correction (IDC) methods have been shown to be an efficient way to achieve arbitrary high order accuracy and possess good stability properties. In this paper, we construct high order operator splitting schemes using the IDC procedure to solve initial value problems (IVPs). We present analysis to show that the IDC methods can correct for both the splitting and numerical errors,...
متن کاملSolving Some Initial-Boundary Value Problems Including Non-classical Cases of Heat Equation By Spectral and Countour Integral Methods
In this paper, we consider some initial-boundary value problems which contain one-dimensional heat equation in non-classical case. For this problem, we can not use the classical methods such as Fourier, Laplace transformation and Fourier-Birkhoff methods. Because the eigenvalues of their spectral problems are not strictly and they are repeated or we have no eigenvalue. The presentation of the s...
متن کاملSemi-implicit Krylov Deferred Correction Methods for Ordinary Differential Equations
In the recently developed Krylov deferred correction (KDC) methods for ordinary differential equation initial value problems [11], a Picard-type collocation formulation is preconditioned using low-order time integration schemes based on spectral deferred correction (SDC), and the resulting system is solved efficiently using a Newton-Krylov method. Existing analyses show that these KDC methods a...
متن کاملAccelerating the convergence of spectral deferred correction methods
In the recent paper by Dutt, Greengard and Rokhlin, a variant of deferred or defect correction methods is presented which couples Gaussian quadrature with the Picard integral equation formulation of the initial value ordinary differential equation. The resulting spectral deferred correction methods (SDC) have been shown to possess favorable accuracy and stability properties even for versions wi...
متن کاملHigh-Order Multi-Implicit Spectral Deferred Correction Methods for Problems of Reactive Flow ?
Models for reacting flow are typically based on advection-diffusion-reaction (A-D-R) partial differential equations. Many practical cases correspond to situations where the relevant time-scales associated with each of the three sub-processes can be widely different, leading to disparate time-step requirements for robust and accurate timeintegration. In particular, interesting regimes in combust...
متن کامل